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Abstract. The operational work of the Interplanetary Solar Stereo-
scopic Observatory (ISSO) may continue for 11 years. The ISSO Project
is designed to insert two spacecraft (SC) into Lagrangian triangular libra-
tion points of the \Sun + barycenter (the Earth + the Moon)" system.
The Project scienti�c program consists of two sets of experiments related
to solar physics and to dynamical astronomy, respectively.

Various options of the astronomical observation program are possi-
ble. We discuss the option where the stereoscopic mode is applied to the
direct triangulation observations of the solar system objects with respect
to the ICRS coordinate frame.

The stereoscopic mode with the baseline equal to
p
3 appears to be

suitable for receiving the three-dimensional (3-D) measurement series for
planets during the ISSO's lifetime. Extended investigation of the plan-
etary aberration based on the observations of major and minor planets,
the direct distance determinations for minor planets and Kuiper's belt
objects, and the new set of star parallaxes may be used for construct-
ing a new fundamental ephemeris and establishing an alternative scale of
stellar distances. The accuracy of the angular measurements is expected
to attain the milliarcsecond level.

1. Introduction

Stereoscopic vision with the base-line of �6{7 cm had been the �rst natural
basis of human evolution in its geometric 3-D adaptation in the world. It is just
that principle that is laid in origin of all scale systems in modern astronomy as
well. The maximum usage of the principle is possible in the stable stereoscopic
mode of astronomical observations.

The Project of the Interplanetary Solar Stereoscopic Observatory (ISSO)
has been proposed by Grigoryev (1993). Extended scienti�c objectives and pro-
grams were proposed by Chubey et al., (1998). Besides the 3-D monitoring of
solar activity processes, the essential advantages for observations of practically
all solar system objects and of star parallaxes in the mode of direct triangulation
are evident.

The observations of the microvariable stars, macro- and microlensed objects
can be also performed by the ISSO instruments. But neither this topic, nor the
solar monitoring program will be described in this article as being out of the

132



Triangulation Measurements 133

main scope of this IAU Colloquium. We shall not be concerned also with detailed
aspects of the Project except the observation instruments.

Our main goal is to describe, strictly speaking, the triangulation potential-
ities of the ISSO.

Two identical on-board instrumental complexes are supposed to be used
to solve the astronomical problems in the stereoscope mode and/or in the sep-
arate programs for the direct imaging of the celestial bodies with di�erential
astrometric determinations of the object positions in the reference catalog sys-
tem and to determine the images' brightness using the broadband photometry
system UBVR. The standard calibration of the instruments and the accurate
chronometry of all measuring processes will be performed under the constant
control of an on-board computer.

2. The optimal launching scheme

Inserting the spacecraft (SC) into the libration points L4 and L5 (Fig. 1) can
be made in the framework of the three-pulse orbit transfer scheme. Thus the
start of the SC, aiming at insertion into the point L5, occurs from a near-Earth
orbit �rst at time D1 when the Earth is at the point L5. For the transition
orbit the given point coincides with the perihelion. After 1.17 years when this
SC will return again to its starting point, it will brake and stop at this point
of the Earth orbit, which will be the Lagrangian point L5. In the time span of
the motion of this SC the Earth will have moved around the Sun by the angle
of 420� and will be advancing the SC in the orbit by the angle of 60�.

At the time moment D2 = D1 + 0:34 years, when the Earth will be at the
point L4, the start from the near Earth orbit of the second SC in the framework
of the same scheme should be made, but for this transition orbit the starting
point will be now at the aphelion. This SC will return to the same point in 0.83
years. At time D3 = D1 + 1:17 years, both spacecraft simultaneously arrive at
the Lagrangian points and their decelerating (braking) or accelerating, and the
maneuvers to form �nal orbits also will be made. The Earth at the moment D3

occupies its pre-calculated position T3, and the stage of the SC navigation will be
completed. This sequence of inserting the SC into their orbits is the optimal one
for decreasing the time of radiation inuence upon the yet undeployed scienti�c
equipment (Chuchkov, 1989; Zabelina, 1997).

The spacecraft with instruments are placed in Earth orbit in the points L4,
L5 (Fig. 1) which are the vertices of the equilateral triangles SL4T and SL5T
where T means the Earth's position in its orbit.

To strictly meet the metrology requirements, in addition to the calibration
measurements of distances by a radar system, it is necessary to determine the
angles between the sides L4T3 and L5T3 of the triangle (Fig. 1). A method of
measurement of the angles as shown in Fig. 2 is based on synchronous measure-
ments of the positions of the Earth and the Moon images with respect to the
stellar frame of reference represented by a reference catalog.

The same observation mode for major planets or asteroids with well-developed
theories of motion is assumed to be used for the regular determination of the
distances L4T3 and L5T3. The DE403/LE403 ephemerides are to be used as the
references for this navigation as well as other program requirements.



134 Abalakin et al.

;

Figure 1. Optimum scheme of SC starts and the formation of their
orbits. P5, the aphelion of the transporting orbit for the spacecraft in
L5, the Earth being at T5 at the moment of the aphelion P5 passage.
P4 is the analogous aphelion for the spacecraft placed in L4. The small
deviation in the SC start velocity may result in the essential change
of the heliocentric transfer path and time, so that permanent orbital
control is necessary.
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Figure 2. The remote self-navigation instrument concept. The bright
� Earth + Moon � will be imaged in the focal planes f2 or ff2.
The image of the undisturbed � starfield � which is placed on the
extension of the vector TL5 (or TL4) will be imaged in the planes f1
or ff1. The on-board processor analysis gives the vector orientation.



136 Abalakin et al.

The Earth's image as seen from the points L4 and L5 will look like a sphere
(more precisely, like an ellipsoid of rotation) not completely illuminated by the
Sun with the angular diameter de = 17.006, the constant phase angle � = 60�, and
with the position angle of the dark terminator � = 0�. The integral brightness of
the Earth and the Moon in the V-�lter will be �2:95m and +1:84m, respectively.
Their observations as well as the observations of bright stars and planets require
absorption �lters to be used, and a special processing technique as well.

The possibility has not been excluded that the same observations of the
Earth will possibly provide for highly important photometry information about
the global processes in the terrestrial ionosphere and magnetosphere that may
be detected only from remote long-term observations.

3. Dynamical aspects of the experiment

The numerical simulation of the inertial motion of the SC is performed by the
simultaneous integration of the post-Newtonian orbital motion equations for the
Sun, major planets, the Earth + Moon barycenter, the Moon, the two zero mass-
points (the SC) as well as of the Newtonian equations of the Moon's rotation.
The initial conditions of the SC motion are de�ned in the �rst approximation
by the position, velocity and acceleration of the Earth + Moon barycenter and
the coordinates of the triangular libration points L4 and L5. The integrated
equations of motion of the major bodies of the solar system reproduce rather
well the fundamental ephemeris DE200/LE200. Thus the predicted orbits of the
SC can be regarded as authentic.

If the initial conditions are formed with no deviations from the theoretical
ones, then the motions of SC in the vicinity of the L4 and L5 points would be
rather regular ones.

The orbital motion of the zero-mass bodies in the vicinity of the Lagrangian
libration centers L4 and L5 is shown in Fig. 3 in terms of variations of the angles
L5ST3, L4ST3 (Fig. 1). It is necessary to emphasize that the algorithm to
construct the SC's orbits is completely identical to the one used to construct the
major planets' orbits. It is necessary to complement the system of the di�erential
equations of the problem under consideration by the di�erential equations of the
Earth's rotation. It permits us to predict with required precision the positions
of the SC with respect to an arbitrary point on the Earth's surface. It is quite
necessary for practical computation of the initial conditions of passive motion,
as well as for the guidance and the full-scale metrology control.

Synchronous observations permit us to exclude both the motion of an object
and that of an observer. The series of star observations is subject to errors of
di�erent origin and properties in comparison with classical ones.

4. Construction of the spacecraft orbits. Determination of the Stere-
oscope base-line

The idea of the method is based on application of the on-board, two-directions
star sensor (Fig. 2) allowing measurements in a coordinate system of a high-
precision. It is assumed that for a known moment of observation the available
on-board equipment includes:
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Figure 3. The post-Newtonian approximation of the motion of zero
mass-points in the vicinity of the triangular libration points over the
time span from 1969 to 2075 as represented by variations of the helio-
centric angles between the Earth + Moon barycenter direction and the
zero mass-points directions.

� The software package for computing the position ephemerides for the Earth
(T , Fig. 1), the Moon (Moon), observed planets (Pl) and their satellites
(Sat), and minor planets (Mpl);

� Catalog and software for an evaluation of astrographic positions and bright-
ness of stellar objects in required areas on the sky;

� The numerical theory of motion of zero mass-points (used for the SC, each
SC is treated as a third body in the three-body problem) in the vicinity
of the libration centers;

� The on-board processor with an appropriate operating system and a clock
(the time standard).

By using the star sensor the following problems of spatial position determi-
nation of a spacecraft have been solved for two cases:

1. The spacecraft position determination from the on-board angular mea-
surements only,

2. The spacecraft position determination when the direct radio measure-
ments of distances from a ground-based command-measuring complex to
the spacecraft are available.

Let's consider each case separately.
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Figure 4. Determination of the proper position of a spacecraft by
observing the Earth and a planet or the Earth and the Sun.

4.1. The spacecraft position determination from the on-board angu-
lar measurements only

Such a determination may be executed at all phases of the ISSO lifetime, i.e.
from the moment of transition onto a heliocentric transfer orbit to the complete
conclusion of the experiment. Directions of two vectors R1 and R3 (Fig. 4) are
independently being measured by the star sensor on-board the SC. The times
of events are recorded by the on-board clock and compared with the scale of
Barycentric Dynamic Time, TDB. The vector R2, from the Earth's center to
the planet's center is calculated on-board using a standard ephemeris giving the
Earth's and a planet's heliocentric radii vectors �2 and �3, respectively, at the
required moment. Hence, in the triangle KTP the linear element, the modulus
of the vector R2 is calculated, and the directions of vectors R1, R3 and R2 are
measured. The determination of the modulus of vector R1 now becomes possible
because the linear element and all three angles in the triangle KTP are known.
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Actually, through three points only one plane can pass, and, therefore, the
vectors are coplanar. The vector R2 = TP = fr2; �2; �2g direction is measured
from a point K in the spherical geocentric coordinate system. The vector is
calculated using the Earth T and a \navigational" planet P radius vectors �2 and
�3, respectively. The direction of vector R3 = TP = fr3; �3; �3g is also observed
from the point K. Taking into account, if necessary, the parallactic displacement
of reference stars in the frame as recorded by a navigational observation of the
planet P and caused by the shift along the vector D directed perpendicularly
from the Earth's center onto the vector R3 direction (Fig. 4) we can reduce the
vector R3 to the Earth's center. Now in the at triangle KTP the angles at its
vertices are those formed by the known directions, i.e. they also are known. So,
the triangle may be solved, and the vectors R1, R3 determined.

All three bodies are moving, but it is easy to consider their motions during
the observation time span as circular (probably, a linear approximation will be
su�cient). To measure all directions and line segments entering the navigation
and actually belonging to the e�ective uni�ed triangle in Euclidean space, it is
necessary to take into account changes of spatial positions of three bodies, the
centers of which form the navigational triangle during the appropriate light-time
intervals. To determine the values of these light-time intervals and to correctly
calculate the ephemeris positions of the Earth and the planet for an observation,
let us consider again Fig. 4.

Let's assume that the observations of directions of vectors R1, R3 are made
at a point K at the common time tobs. It is possible to optimize the sequence of
observations. The measured angle 6 TKP = �1 is the angular distance between
two points in the satellite-centric coordinate system K(r; �; �), the axes of which
are parallel to those of the heliocentric ecliptic coordinate system. The �rst
point Tfr1; �1; �1g coincides with the heliocentric position �2 of the Earth T at
the moment preceding the moment tobs by the time-span required for the light
wave to travel over the distance r1. The second point fr3; �3; �3g represents the
analogous position �3 of a planet P at the moment preceding the moment tobs by
the value of the corresponding light-time interval. Let's designate 6 TPK = �3
and 6 KTP = �2.

The light-time �(Ri) for the vector Ri is calculated (but not measured!) by
the formula:

�( ~Ri) =
j ~Rij
c
; (1)

if both the modulus of the vector and the velocity of light in vacuo are known.
To determine the vector R3 now we have the vector equation:

~R2(tobs) = ~�3

�
tobs �

j ~R3j
c

�
� ~�2

�
tobs �

j ~R3j
c

�
: (2)

The sine formula gives the following values of the vectors R1, R3, their
directions in space having immediately been observed:

j ~R1j = j ~R2j �
sin�2

sin�1
;



140 Abalakin et al.

j ~R3j = j ~R2j �
sin�2

sin�2
: (3)

All variables entering the formulae (2), (3) are functions of the light-time.
For the evaluation of the light-time the equations (1), (2), (3) should be solved
by iteration in accordance with the scheme:

�0 = 0;! ~Rk = ~Rk(�k�1);

�k =
j ~Rkj
c

; k = 1; 2 : : : (4)

j�k+1 � �k j � ";

where " is the required accuracy of an evaluation of the time argument.

4.2. Determination of the spacecraft position using the direct ra-
dio measurements of distances from a ground-based command-
measuring complex (GCMC) to a spacecraft. Evaluation of the
stereoscope base-line.

Let's assume that the deep space communication radar combined with the re-
translator located onboard a spacecraft are used to measure distances from
GCMC to both spacecraft. In this case the measurement scheme provides the
absolute (not the pre-computed) range tracings.

The radar measurements give the UTC proper time intervals of the radio
waves propagation by use of the atomic clock at an observing site. Let's consider
the true path of a radio beam.

It is impossible to observe directly the position of the \Earth + Moon"
system barycenter. The Earth is observed, and its position with respect to
the \E + M" barycenter is known. The time record t is made on the scale of
ephemeris time TDB (the Barycentric Dynamical Time), being kept, e.g., by
the atomic time standard of an observing site.

In an ideal case the vector of the base-line KP (Fig. 5) connects the centers
of spacecraft K and P in their theoretical position relative to the barycenter of
the system � \the barycenter of the Earth + the Moon" system + the Sun�.

Due to the inuence of the planetary aberration and of the pure libration
motion the observables are the vectors R1, R2, and the angle K 0TP 0. At a
moment t0, let a signal be emitted from the Earth as the spherical wave v
propagating with the velocity of light. Because of orbital motions of the centers
T , K and P the instrument on the SC moving in the vicinity of the libration
center L5 will meet the wave v at the point K at the time tK0 = t0 + �(R1),
while that aboard the SC moving in the vicinity of the L4 center meets the wave
at the point P 0 at the time tP 0 = t0+ �(R2). At the moments of their arrival at
the SCs, let the signals be reected in the direction to the pre-computed Earth
position at the moments of arrival of the reected signals from both spacecraft.
Obviously, it is the position of the Earth at T 0 where the reected signals from
both SCs will meet since the path of the ray in the direction of the orbital motion

of the Earth and in the opposite direction will be identical, so that j ~R2j = j ~R4j.
Similarly, one gets j ~R1j = j ~R5j. It should be noted that the rotational shift of
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Figure 5. The concept of triangulation measurements of the Stereo-
scope baseline vector. S0S00 is the line of apses of the Earth orbit.
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Figure 6. The elementary scheme of measurements of a radius vector
for a body of the solar system.

the observing site, the delay in the Earth's ionosphere, and the correction terms
of the second order in evaluating the light-time intervals have been neglected
here (Standish, 1990). We note only that in our case the radio signals are not
reected from the surface of a planet which has its own atmosphere and radiation
belts but from points of the antennas aboard the spacecraft.

Thus, the navigational triangles are formed by the point T from which the
signal is emitted at the time moment t0, and by the pointsK

0, P 0 and T 0 in which
the signal is reected and received as the echo. To measure the angle 6 T in this
triangle, it is necessary to execute the exposures for determination of the Earth's

direction at di�erent time moments: tK0 = t0 + �( ~R1) and tP 0 = t0 + �( ~R2)
Let's measure now the position of the planet P synchronously. In the trian-

gle KTP (Fig. 4) its three angles and the side L4L5 are known. The reduction
to the heliocentric coordinate system and the solution of a redundant set of
equations do not cause any di�culties.

5. Assessment of the 3-D measurement accuracy

Let's evaluate the accuracy of the determination of the heliocentric position of
a planet from the measurement session.

Let's note that the solution of the problem dealing with the estimation of
three-dimensional coordinates of a point object from space stereoscopic obser-
vations is already presented in the general review (Bakut and Schulz, 1998) of
measurements in near-Earth space. In their measuring system of a stereoscopic
pair the absolute observations in the instrumental system were used. Our ap-
proach di�ers in that it is based on di�erential measurements with respect to
the reference frame represented by a high-precision catalog.
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Let the sides L4T and L5T (Fig. 6) be measured in the single session with
the error �r = �20 km. Let's present the vectors L4T and L5T in the spherical
heliocentric coordinate system as L4T = R4f�4; �4; �4g, L5T = R5f�5; �5; �5g.
The angle  between the vectors R4 and R5 we shall �nd from the formula

cos  = sin �4 sin �5 + cos �4 cos�5 cos(�4 � �5): (5)

All arguments in the right-hand side of (5) are measurable quantities and
subject to the errors mentioned above. The points L4, T , L5 should be located in
the plane of ecliptic. After some simpli�cations we have a di�erential relationship
to determine the error of the computed angle  with respect to the second order
terms:

sin  � d = ((�4 + �5) cos(�4 � �5) +
p
2 sin(�4 � �5)) � d�: (6)

We can assume that the standard error of a single measurement of the an-
gular component of the direction vector when using the CCD-array observations
is �0 = �� = �� = �0.0005. Omitting the elementary calculations and taking
into account the size of the quantities �4; �5 and the properties of the triangle
L4TL5, we get the �nal evaluation of the accuracy of the determination of the
angle  as:

� =
p
2�0 = �0.0007 = 3:5 � 10�7rad: (7)

Let's �nd the estimation of the accuracy of the determination of the length
of vector L4L5 designated as the stereoscope baseline vector Bf�3; �3; �3g.

We have the expression for the square of the side in the triangle �L4TL5:

�23 = �24 + �25 � 2�4�5 cos: (8)

We have the complete di�erentials in the right-hand and left-hand sides of
(8):

�3d�3 = (�4 + �5)(1� cos)d�+ �4�5 sin  � d: (9)

We shall derive the equation for the dispersion of the measured quantities
by squaring both sides of (9) and taking into account that the equalities

�3 =
p
3a; d� = d�4 = d�5 = j�rj; cos  = �0:5; sin  =

p
3=2 :

(d�3)
2 =

3

4
(d�)2+

a2

4
(d)2+

a
p
3

2
d� � d: (10)

are valid as a �rst approximation for moduli of the vectors.
By substituting dispersions d�, d, we shall obtain the required evaluation

of accuracy of the baseline B determination in terms of astronomical units as:

�B = d�3 = �2:87� 10�7a:e: (11)

Let's evaluate now with what accuracy the distances to planets will be
determined by using the stereoscopic baseline B. We come back to the scheme
of Fig. 6. Let's assume that the planet P is stereoscopically observed in such a
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way that the perpendicular from its center to the baseline vector falls precisely
on the extremity of the baseline, i.e. on the point L5. We have the rectangular
triangle PL5L4 in which the side B is known and the angle 6 P is measured,
additionally the angle 6 L5 is a right angle.

We have the elementary formula connecting the sides and an angle in this
triangle:

sin� =
B

D
; (12)

where D is the perpendicular length or the distance of the planet from the point
L5.

From (12) we get

D =
B

sin�
=

p
3a

sin �
: (13)

The dispersion of distance �D as that of a function of two variables B and
� will be found from the expression

�D = �

s
1

sin2 �
�2
B
+

B2

tg2� sin2 �
�2
�
: (14)

Let's write the complete di�erentials of the right-hand and left-hand mem-
bers of the equation (12)

cos� � d� =
D � dB � B � dD

D2
: (15)

Thus we shall get the equation

dD =
D

B
� dB �

D2

B
cos� � d�; (16)

which can be written as the equivalent dispersion variations of the measured
quantities:

(�D)2 =

�
D

B

�2
� (�B)2 +

�
D2

B
cos�

�2
� (��)2: (17)

The contribution to the error of distance determination, made by the base-
line determination error, is proportional to the �rst power of distance D. The
contribution to this error made by the uncertainty of the angular measurements
is proportional to the second power of the distance determined. It follows that
the increase of accuracy of the angular measurements is signi�cant to improve
the accuracy of triangulation measurements of positions of the solar system bod-
ies.

Another, obvious consequence is that the error of the distance determination
decreases with increase of the baseline. In technological and theoretical respects
the construction of the baseline using the triangular Lagrange libration points
in the system \the barycenter of the Earth + Moon � the Sun" is scienti�cally
justi�ed to the highest degree.



Triangulation Measurements 145

Results of long-term monitoring of both SC's positions will be the improve-
ment of the Earth's orbit parameters, the determination of the velocity of light
in vacuo and the determination of the parameters of the orbital motion of zero
mass-points in the vicinity of the libration centers.

With respect to the solar system bodies the most interesting are the trian-
gulation observations of faint objects located at distances � > 30 a.u., i.e. the
objects of the Kuiper Belt. Even a single synchronous observation of such an
object from the spacecraft allows us to determine all three components of the
state vector of an object which would be impossible to �nd by other methods.
Another observation one year later enables us to determine the velocity vector
of that far object of the solar system. Derivation of its preliminary elliptical
orbit is possible as the solution of the classical Cauchy problem with the initial
conditions determined for the moment of the �rst observation.

It is possible also to make synchronous observations of some already dis-
covered objects of the Kuiper Belt to obtain more accurate orbits. Observations
of the asteroids approaching the Earth (AAE) are of no less interest. These ob-
servations are made in the directions which are close to directions to the Earth
and the Moon and are easier technically because the brightness of the AAE is
inconsiderable.

Independent of the celestial mechanics program the determination of orbits
of moving minor objects of the solar system, i.e. asteroids, comets, planetary
satellites, etc., is possible by using various methods, including the apparent mo-
tion parameters method (so-called the PVD-method), which has been developed
at the Pulkovo Observatory and tested on conventional ground-based observa-
tions (Kiselyov & Bykov, 1976).

6. The observations of the microlensing events

The idea of simultaneous observations of microlensing events from the Earth's
surface and from aboard a distant spacecraft, very remote from the Earth, was
proposed for the �rst time by Gould in 1992 (Gould, 1992, 1994a, 1994b). This
experiment with the system of three instruments placed into the points L4, L5,
T (Fig. 7, b)) could also provide unique information on a lens.

Observations of microlensing events, (Fig. 7, a)), using the on-board equip-
ment are possible, however, only after the detection of these events by the
ground-based observer teams (Gurevich et al. 1997; Narayan & Bartelman 1996;
Zylberajch 1995). After ground-based detection of the events the coordinates
of suspected objects are introduced into the on-board observation program of
each spacecraft. If it would be possible to observe the moments of transit of a
brightness maximum of the lensed object (Fig. 7, b)) at the three vertices of
the triangle L4TL5 it would allow us to estimate by the direct geometrical way
the tangential component of the relative spatial path of a gravitational lens (L)
or of the lensed object (S) image (the arrow A), the conventional linear tan-
gential velocity V� being determined directly. The relative proper motion and
its positional angle could be estimated for L (Chubey 1998) if the conventional
parallax or the direct distance DOL is known. As an alternative to the gravita-
tional refraction which is of the order of two microarcseconds (Hosokawa et al.,
1995), the photometric observations of the microlensing e�ect on the changes of
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Figure 8. Left: the concept of the Schmidt space camera. Right: the
instrument version of the Korsch three-mirror-system (Korsch, 1977)
as designed by Tsukanova and Starichenkova (1997).

the observed light curves (Fig. 7, c)), being corrected for orbital movement, are
more practicable.

7. The instruments

It is proposed to use an astrograph with limiting magnitudes of 21m � 22m and
with di�raction quality of images in the �eld of view with angular diameter
2W = 1� as a basic instrument. Two optical schemes are being studied: the
Schmidt space camera and the three-mirror system telescope of Korsch (1977).
Both instruments should be equipped with the pointing mirror (Fig. 8) with
an aperture of 500 mm and a focal length exceeding 5000 mm, with a folded
mounting, the CCD-mosaic as a light detector (4 lines by 5 modules � 800�800
of 16� pixels, scale < 4000/mm or � 0:6600/ pixel, �eld of view � 350 � 450), the
signal to noise ratio being � 5.

The astrometric star position determination accuracy is planned to be bet-
ter than 10 mas, the photometric one being not worse than 0:02m or 0:03m for an
individual measurement of objects of 17m to 19m. The following characteristics
and processes are permanently calibrated by the exible check program aboard:
the dark current, the non-uniformity of the sensitivity of the detector or \the
at �eld," and the record of damaged pixels. For the photometry systems the
broadband UBV R and integral ones are to be used.

The information acquisition is planned to be performed in the optimal frame
addition mode, 96 frames per day. It would be possible to compress each frame
up to density p � 2 bits per pixel (White & Percival, 1994) or up to 4 MB
per frame (after on-board processing). The working brightness range is �V 2
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(12m � 22m) at the mission beginning. The daily astronomical information
volume rate is 3 Gbytes. Addition of the solar physics information amounting
to 6.5 Gbytes will result in 9.5 GB total information to be transferred each day
requiring the capacity of the communication channel to be � 110 KB per sec. To
meet these requirements the design concept includes the folding phased antenna
with the planned surface area of � 25m2.

We may conclude that there are evident scienti�c objectives in the creation
of the ISSO. The idea to create a space radio interferometer on the same basis
as that of the ISSO has been suggested in Kardashev et al. (1973). The grav-
itational features of these remarkable projects will probably be used in future
space experiments.
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